Ni Dmg 2 2 Structure

  1. Ni(dmg)2 Structure
  2. Ni Dmg 2 2 Structure System
  3. Ni Dmg 2 2 Structures
  4. Nickel Dimethylglyoxime
  5. Ni Dmg 2 2 Structure Diagram

Given The Structure Of Ni(dmgH)2, Do You Think DmgH Is A Strong Or Weak Field Ligand? Given The Structure Of Is Ni(acac)2(H2O)2, Do You Think Acac- Is A Strong Or Weak Field Ligand? (2 Marks) This problem has been solved! See the answer. Show transcribed image text. Nov 16, 2010  here is the structure of nickel DMG. U can calculate the molecualr formula and then divide it by atomic mass of nickel and multiply by 100 to get your answer. The molar mass of Ni(DMGH)2 is 58.7+117.2.2=293.1. So% of nickel = 100.58.7/293.1 =34.1%. Login to reply the answers Post; Still have questions? Get your answers by asking now. Ni(DMG)2 results are thoroughly compared with Cu(DMG)2 and also against available experimental data. Stronger H-bonding leads to greater stability of Ni(DMG)2 with respect to isolated ions (M2+ and DMG–) compared to Cu(DMG)2. Structural, Electronic, and Spectral Properties of Metal Dimethylglyoximato M(DMG) 2; M = Ni 2+, Cu 2+ Complexes: A Comparative Theoretical Study October 2019 The Journal of Physical.

2 + 2 dmg All of the complexes are Ni2+octahedral except from Ni(CN) 4 2-which is a Ni2+ square planer complex. As the strength of the field ligand increases the field splitting increase. The ligands, used in this demonstration, listed in order of increasing field strength are.

Ni dmg 2 2 structure 3
Nickel(II) hydroxide
Names
IUPAC name
Other names
Nickel hydroxide, Theophrastite
Identifiers
  • 12054-48-7
  • 36897-37-7 (monohydrate)
ChemSpider
ECHA InfoCard100.031.813
EC Number
  • 235-008-5
RTECS number
CompTox Dashboard(EPA)
  • Key: BFDHFSHZJLFAMC-UHFFFAOYSA-L
  • Key: BFDHFSHZJLFAMC-NUQVWONBAJ
  • [Ni+2].[OH-].[OH-]
Properties
Ni(OH)2
Molar mass92.724 g/mol (anhydrous)
110.72 g/mol (monohydrate)
Appearancegreen crystals
Density4.10 g/cm3
Melting point 230 °C (446 °F; 503 K) (anhydrous, decomposes)
0.13 g/L
+4500.0·10−6 cm3/mol
Structure[1]
hexagonal, hP3
P3m1, No. 164
α = 90°, β = 90°, γ = 120°
Thermochemistry
79 J·mol−1·K−1[2]
Std enthalpy of
formationfH298)
−538 kJ·mol−1[2]
Hazards
Safety data sheetExternal SDS
GHS pictograms[3]
GHS Signal wordDanger[3]
H302, H332, H315, H334, H317, H341, H350, H360, H372[3]
P260, P284, P201, P280, P405, P501[3]
Lethal dose or concentration (LD, LC):
1515 mg/kg (oral, rat)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
verify (what is ?)
Infobox references

Ni(dmg)2 Structure

The test tube in the middle contains a precipitate of nickel(II) hydroxide

Nickel(II) hydroxide is the inorganic compound with the formula Ni(OH)2. It is an apple-green solid that dissolves with decomposition in ammonia and amines and is attacked by acids. It is electroactive, being converted to the Ni(III) oxy-hydroxide, leading to widespread applications in rechargeable batteries.[4]

Properties[edit]

Structure

Nickel(II) hydroxide has two well-characterized polymorphs, α and β. The α structure consists of Ni(OH)2 layers with intercalated anions or water.[5][6] The β form adopts a hexagonal close-packed structure of Ni2+ and OH ions.[5][6] In the presence of water, the α polymorph typically recrystallizes to the β form.[5][7] In addition to the α and β polymorphs, several γ nickel hydroxides have been described, distinguished by crystal structures with much larger inter-sheet distances.[5]

The mineral form of Ni(OH)2, theophrastite, was first identified in the Vermion region of northern Greece, in 1980. It is found naturally as a translucent emerald-green crystal formed in thin sheets near the boundaries of idocrase or chlorite crystals.[8] A nickel-magnesium variant of the mineral, (Ni,Mg)(OH)2 had been previously discovered at Hagdale on the island of Unst in Scotland.[9]

Reactions[edit]

Nickel(II) hydroxide is frequently used in electrical car batteries.[6] Specifically, Ni(OH)2 readily oxidizes to nickel oxyhydroxide, NiOOH, in combination with a reduction reaction, often of a metal hydride (reaction 1 and 2).[10]

Reaction 1 Ni(OH)2 + OH → NiO(OH) + H2O + e

Reaction 2 M + H2O + e → MH + OH

Net Reaction (in H2O)Ni(OH)2 + M → NiOOH + MH

Of the two polymorphs, α-Ni(OH)2 has a higher theoretical capacity and thus is generally considered to be preferable in electrochemical applications. However, it transforms to β-Ni(OH)2 in alkaline solutions, leading to many investigations into the possibility of stabilized α-Ni(OH)2 electrodes for industrial applications.[7]

Synthesis[edit]

The synthesis entails treating aqueous solutions of nickel(II) salts with potassium hydroxide.[11]

Toxicity[edit]

The Ni2+ ion is a known carcinogen. Toxicity and related safety concerns have driven research into increasing the energy density of Ni(OH)2 electrodes, such as the addition of calcium or cobalt hydroxides.[4]

Ni Dmg 2 2 Structure System

See also[edit]

References[edit]

Ni Dmg 2 2 Structures

  1. ^Enoki, Toshiaki; Tsujikawa, Ikuji (1975). 'Magnetic Behaviours of a Random Magnet, NipMg(1-p)(OH2)'. Journal of the Physical Society of Japan. 39 (2): 317. doi:10.1143/JPSJ.39.317.
  2. ^ abZumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN978-0-618-94690-7.
  3. ^ abcd'Nickel Hydroxide'. American Elements. Retrieved 2018-08-30.
  4. ^ abChen, J.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. (1999). 'Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries'. J. Electrochem. Soc. 146 (10): 3606–3612. doi:10.1149/1.1392522.
  5. ^ abcdOliva, P.; Leonardi, J.; Laurent, J.F. (1982). 'Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides'. Journal of Power Sources. 8 (2): 229–255. doi:10.1016/0378-7753(82)80057-8.
  6. ^ abcJeevanandam, P.; Koltypin, Y.; Gedanken, A. (2001). 'Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method'. Nano Letters. 1 (5): 263–266. doi:10.1021/nl010003p.
  7. ^ abShukla, A.K.; Kumar, V.G.; Munichandriah, N. (1994). 'Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells'. J. Electrochem. Soc. 141 (11): 2956–2959. doi:10.1149/1.2059264.
  8. ^Marcopoulos, T.; Economou, M. (1980). 'Theophrastite, Ni(OH)2, a new mineral from northern Greece'(PDF). American Mineralogist. 66: 1020–1021.
  9. ^Livingston, A.; Bish, D. L. (1982). 'On the new mineral theophrastite, a nickel hydroxide, from Unst, Shetland, Scotland'(PDF). Mineralogical Magazine. 46 (338): 1. doi:10.1180/minmag.1982.046.338.01.
  10. ^Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. (1993). 'A nickel metal hydride battery for electric vehicles'. Science. 260 (5105): 176–181. doi:10.1126/science.260.5105.176. PMID17807176.
  11. ^Glemser, O. (1963) 'Nickel(II) Hydroxide' in 'Handbook of Preparative Inorganic Chemistry, 2nd ed. G. Brauer (ed.), Academic Press, NY. Vol. 1. p. 1549.

Nickel Dimethylglyoxime

External links[edit]

Ni Dmg 2 2 Structure Diagram

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Nickel(II)_hydroxide&oldid=930234659'

Comments are closed.